Search results for "hyperbolic dynamics"
showing 5 items of 5 documents
Dynamic instability in absence of dominated splittings.
2006
We want to understand the dynamics in absence of dominated splittings. A dominated splitting is a weak form of hyperbolicity where the tangent bundle splits into invariant subbundles, each of them is more contracted or less expanded by the dynamics than the next one. We first answer an old question from Hirsch, Pugh and Shub, and show the existence of adapted metrics for dominated splittings.Mañé found on surfaces a $C^1$-generic dichotomy between hyperbolicity and Newhouse phenomenons (infinitely many sinks/sources). For that purpose, he showed that without a strong enough dominated splitting along one periodic orbit, a $C^1$-perturbation creates a sink or a source. We generalise that last…
Small $C^1$ actions of semidirect products on compact manifolds
2020
Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…
Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows.
2020
The present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.During the realization of this th…
Flots de Smale en dimension 3: présentations finies de voisinages invariants d'ensembles selles
2002
Abstract Given a vector field X on a compact 3-manifold, and a hyperbolic saddle-like set K of that vector field, we consider all the filtering neighbourhood of K: by such, we mean any submanifold which boundary is tranverse to X, the maximal invariant of which is equal to K and which intersection with every orbit of X is connected. Up to topological equivalence, there is only a finite number of such neighbourhoods. We give a finite combinatorial presentation of the global dynamics on any such neighbourhood. A key step is the construction of a unique model of the germ of X along K; this model is, roughly speaking, the simplest three-dimensional manifold and the simplest Smale flow exhibitin…
Hyperbolicity as an obstruction to smoothability for one-dimensional actions
2017
Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…